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ABSTRACT

A method for analyzing asymmetric biorhythm wave forms is presented
utilizing a curve fitting technique based on the method of moments and
solutions of the Volterra Integro-Differential Equation. The mathematical
derivation is given as well as a workéd example using heart-rate (HR) data
collected from a male chicken. The asymmetric HR wave form could be separated
into three component curves, an ascending logistic, a descending logistic
and a unimodal curve (similar in form to a skewed normal distribution), the
parameters of which describe heart-rate changes and the trajectory of the
wave form. While these parameters cannot as yet be related to specific
physiological mechanisms, the results suggest hypotheses which may be tested
experimentally. The implications of the mathematical model in the understanding

of biorhythms are discussed.



INTRODUCTION

A major activity of this laboratory has been the continuous monitoring of
heart rates (HR), deep body temperatures (DBT), and locomotor activity (La) of
chickens and primates, utilizing biotelemetry. Fryer et al. (1966) have des~
cribed the telemetry system. Data are collecfed at 6-minute intervals and are
reduced and analyzed, utilizing a computer program whose major features have
been described by Winget et al. (1968). The mathematical basis of this com=-
puter program is that of harmonic analysis, the technique by which biological
time series data have been classically analyzed.

In general, harmonic analysis provides estimates of the periodicity of
the data as well as of amplitudes and phases of the periods. Biologists have
been particularly interested in the persistency of the observed periods and
phases, and techniques have been devised that provide such analyses, includ-
ing the Periodic Regressionb(Bliss, 1958) and the Cosinor (Halberg, 1965).

The mathematical principles underlying harmonic analysis have been succinctly
described by Pfeiffer (1961), LePage (1941), and Chapman and Bartels (1940).

The investigator of biological time 'series phenomena often encounters
asymmetric responses during 24-hour periods. Such asymmetric curves have been
reported by Winget et al. (1965) on DBT measurements in the chicken; Winget et
al. (1968a) on DBT, HR, and LA in the chicken; Winget et al. (1968b) on DBT and

HR in the primate, Cebus albafrons; Winget et al. (1968c) on DBT in the primate,

Macacca nemestrina; Carlson (1968) on HR in astronauts in the Gemini-7 flight;

and Kayser and Heusner (1967) on oxygen uptake in the deer mouse, Peromyscus.



This list is by no means intended to be exhaustive, but is cited merely to
indicate the wide range of species and physiological parameters wherein asym-
metric biorhythm data have been encountered. The observed data curves gen-~
erally indicate a rapid rise of the parameter to a peak value, followed by a
plateau and a rapid fall to minimal levels. Such curves are not readily ame-
nable to being analyzed by harmonic analysis, since poor fits result unless a
large number of harmonics are utilized. More importantly, harmonic analysis
does not explain the results obtained, and higher order harmonics are diffi~
cult to interpret (Blackman and‘Tukey, 1958) .

Mean responses of physiological parameters (e.g., DBT) taken over a num-
ber of time periods may be thought of as a wave form that is stationary in
time or one that, when properly transformed, becomes stationary in time. This
paper is concerned with the mathematical analysis of such wave forms and with
the detailed description of the mathematical methods developed for this purpose.
These methods center on a unique curve-fitting device that represents a syn-
thesis of well-known mathematical techniques and utilizes the method of
moments. The curve-fitting technique has wide applicability to the fitting
of data where the unknown parameters of the function appear nonlinearly, so
that the method of least-squares cannot be applied directly. However, the
particular application of the method is based on solutions of Volterra's
Integro-Differential Equation (VIDE) (Volterra, 1913a, 1913b, 1959). The
mathematical basis will be presented in detail, and a worked example will be

given, utilizing heart rate data obtained from a male chicken.



MATHEMATICAL METHODS

Development of the Fundamental Period

Heart rate data were automatically collected on punched paper tape and
were then subjected to harmonic analysis, using a computer program developed
at the laboratory. The major features of the computer program are a gquality
control system and computations of periodograms and correlograms.

A quality control system was deemed necessary to ensure accuracy of the
data before they were subjected to further analysis. Extreme data points were
eliminated and nonharmonic trends, linear and nonlinear, were removed. Data
points were judged to be extreme when they fell outside phsyiologic limits.
Trends were removed by the use of least-squares procedures. A moving
phasogram utilizing a 24-~hour period was developed to detect sudden shifts
‘in phases, as well as a moving periodogram that detected shifts in ampli-
tudes of periods under observation. The data were then used to compute
periodograms and correlograms.

Periodogram analysis is widely used to indicate possibly significant per-
iods while correlograms are computed to verify the results of the periodogram.
These analyses were also used here to establish the period for the stationary
wave form,

Analysis of the Wave Form

The curve-fitting technique to be described could be illustrated using many
nonlinear functions beginning with the simple form, vy = a exp(Xt). The function
of interest here was the VIDE, which was utilized for illustrative purposes be-

cause of its wide applicability to biological processes. The mathematics are
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presented in detail for those interested in applying the technique to other
exponential functions. A worked example will be given for those who wish to
use the technigue to £it their data but who are not interested in the detailed

mathematics.

The VIDE may be written as follows:

gl

T
% = a - by + I k(t,2)y(2)dz ~ (1

o
where y represents the value of the physiological system studied (in this case,
heart rate),>and where the three parameters represent (following Davis, 1962):

l. a, a generative factor proportional to the heart rate.

2. b, an inhibiting influence proportional to the square of the heart

rate,

3. k{r,z), a heredity component composed of the sum of individual factors

encountered in the past.

These parameters will be developed from the data., It is necessary, how-
ever, to attempt to define these parameters in the present context as the terms
"generative," "inhibiting," and "heredity" are not used in their usual sense.
Volterra was concerned primarily with elucidating increases and decreases of
numbers of individuals in animal populations, while Davis (1941) applied the
VIDE to describing changes in economic systems, extrapolating from examples of
growth of individual animals and of populations. FEach of these authors could
utilize the term "growth” in its accepted sense, In this paper the parameter,

a, may be though of as a "growth” parameter in that it defines the rapidity at
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which heart rate increases, and the parameter, b, as a "decay" parameter in
that it defines the rate at which heart rate is slowed. The third parameter,
kiT,2), may be thought of as a "memory" factor, i.e., a phenomenon represent-
ing the effect of pést history on the ﬁeart rate of the animal. The biologi-
cal meaning’pf these parameters will be discussed further.‘

The parameter k(7,2z) will be restricted to k(1 -~ 2z), since Volterra
(1913a) has indicated thét "in the case of a closed cycle, which is completely
equivalent to the case where heredity is invariable, it can be shown that the
integral equations are simply functions of the difference (T - z) of the two
variables" (see also Volterra, 1913b, 1959). The parameter k{7 - z) may be
expanded mathematically into an infinite series of iterated integrals with
factors of proportionality Ki. The first of these, Ko’ relates the area under
the wave forxrm with the differential equation. Under the assumption that all
the Ki' except Ko' are zero, and making the following transformations: y = ap/b;
T = x/a; and ) = Ko/ab, where a and b are restricted to values greater than

zZero, equation (1) simplifies to:

X
1 dy
~ =1 - W+ dx (2)
0 ax H Afu
o}
The family of curves produced by varying )\ is shown in Fig. 1 (Davis, 1962).
The case where X = 0 generates the logistic or growth curve. If )} > 0, i.e.,
when KO is positive, growth increases without limit. If )} < 0, unimodal types

of cuxves arve produced whose extreme values approach zero.



A wave form may be considered to represent the sum of several components,
each of which may be of a type shown in Fig. 1. Hence, wave-form analysis con-
sists primarily of partitioning the observed wave form into its components.

An example of such partitioning has been given by Carver (1924) for actuarial
data described by Pearson's frequency distribution system of curves.

The parameter, )\, must be obtained from the data, which implies that a, b,
and KO must be estimated. The techniques used for these estimations or,
equivalently, for fitting the data curves will be described in detail.

Equation (1) may be rewritten in finite difference form (assuming b is

negative):

L ay®) L e + n.-zl K[ (n-1) ,~t]y (t) 3
v (t+l) At £=0

where t is an assigned integer for the n data points at the times 7, i.e.,
t=0,1, 2, .., n=1, n. For equally spaced data At = 1 and thus vanishes.
Since K{(n=1) - t] is a function of one variable, it may be written formally

as follows, where [ is the well-known gamma function:

Kb Kl(n-l—t) Kz(n~1»t)2
Ko=) = =v0 * "r YT e T )

S
In ordexr to transform the power term (n-l-t) into its factorial represen-

S S
tation (n—l—t)( ), the difference of zero, Dq, are utilized (Davis, 1962). Thus,

s (n-1-t) (@

S
S

~let)” = 5

(n ) )2 g T(aq+l) (5)

g=0



Equation (4) is therefore:

© [ s DZ(n-l-—t) (@)
Ki(n-1)~t] = 3 K Z (6)
oo S Lq=0 T(q+l)
where (n—lut)(q) = (n-1-t) (n=-2=t) (n=3=t) ... (n=g+l) .
Substituting (6) into (3):
© S s n-l=-gq (n-1-t) (q) .
Ay(t) = a+ by(t) + X K % D b T(ail) y (t) (7)
v (£+1) S=0 g=0 T t=0 4
and noting that (n—l—t)(s) vanishes for t > (n-l-q), we obtain:
Ay (t) = ay(t+l) + by(t+l)y(t)
w© S n=l-q (@)
S -1~
ty) DR | 3o 3 Py (8)
$=0 g=0 T t=0 d

r
The summation operator, P , of the finite difference calculus (Milne-
n
™
Thompson, 1951), is analogous to the general integration operator, o t (Davis,

1951) of the infinitesimal calculus and has a formula similar to:

- t Z z 1 t mel
D y(t) =.[ dz j dz <-- f y(z)dz = — (t-2z) v(z)dz (9)
ot I'(m)

o o o o)

The finite difference formulation of the above is

(n=t-1) &

T'(x)

-1
(n=r+1)

Tlo=t)y(t)
T(x) T(n~t=xr+1)

4 P(n—r+l) y(ty¢ (10)

=X
P t) =P
ALY
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-y
Using this relationship we can rewrite equation (8) in terms of the Pn operator,

which, in turn, can be computed from the data.

o

S
. S — l
Ay(t) = ay(t+l) + by(t+1)y () + y(t+41) T K, T . Pn(q+ )y
S=0 ~ g=0 ’

(t) (11)

Summing egquation (11) to form an integro-difference equation allows us to
enter the value of y(0) (Hudson, 1953), which is lost in the formulation of

difference~equation (11). After letting

G(t) = y(t+l)t(t)

s (12)
H(e,8) = yel) 5 D0 2D oy
g n
g=0
we obtain
1 1 1o
y(t) = aP "y(t+l) + bP "G(t) + P Y K, H(t,S) + $(0) (13)
n n n 8=0 S

the integro-difference equation that is to be fit to the data. The method of
least-squares may be utilized for fitting. However, the method of moments was
considered to be more advantageous for two reasons. First, the area under the
wave form is conserved, and second, the actual fitting procedure is greatly

simplified because the summation operators, P;r, are calculated directly from

the data (Hartley, 1948) and are related simply to the moments of functions cal=

culated about a point, t = n-1l.



In order to apply the method of moments (Elderton, 1953), we multiply the

r
above equation by (t-n+l)} and sum from € = 0 to n -~ 1 to obtain:

Pl (tent1) Ty (t) = ap b [(t—n+l)r ply (t+1)] + bp T [(t—n+l)r p et |
n n n n n

J
e 1 1 1
+ ¥ K_ P [(t-n+l)r P H(t,S)] +900) P (t-n+D)” (14)
S=0 S n n n

It can be shown that

r
Pl temt) Ty (6) = (1T 3 of ¥
n X n

x=0

(t) (15)

Then (14) may be rewritten as:

r ) r r

> o oy —ayx [Dr P_(x+2)y(t+l)} +Db YT ’[Dr P (X+2)G(t)]
n X n X n

X= x=0 x=0

H(t,sﬂ
S=0 x=0

r
+30) T [D

%x=0

r I'(n+1) ]

x T'(x+2) T'(n=-x) (16)

Setting r =0, 1, 2, 3 ... any number of simultaneous linear equations may be
developed whose solution provides estimates of the parameters a, b, KS, and y(0).
We have been able to describe the present data with K(r,z) limited to the

first term of its expansion, KOn If this is done, we obtain:



i s r : r
s o * o cay [Dr v (X+2)y(t+l)} +Db ¥ [Dr P“(X”Z)G(t)]
X X n p. 4 n

n
x=0 =0 x=0

X
+K T [Dr p~ (¥+2) H(t,O)]
Ox= X n/

r T(n+1) ] (17)

X
*YO » [DX T(x+2) I(n=-x)

x=0

r )
The D or differences of zero (equation (5)) are given in Table I.
X

RESULTS

A mature, male, Single Comb White Leghorn chicken was confined in a cage
maintained under thermally neutral conditions and was given 14 hours of light
{(0600~2000 hr) and 10 hours of darkness (2000-0600 hr). Heart rate data were
collected at 6-minute intervals over a l4-day time period, following a prior
equilibration period. Part of the data are shown in Fig. 2, in which the wave
form is readily seen.

The 6-minute means, suitably edited as described earlier, were utilized to
produce a periodogram, Fig. 3, and a correlogram, Fig. 4.

The significance of individual periods was tested by use of Fisher's prob-
ability distribution (Fisher, 1929). Significant periods were observed at 24,
12, 6, and 4 hours, P < 0.001, with a suggestion of a broad band at 8 hours.

The correlogram, Fig. 4, verified the significance of the 24~hour period.

The phase of the 24~hour harmonic was consistent over the 14-day data col-

lection period as shown by the "moving phaseogram" analysis. The lack of change
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of the phase permitted the l4-day data to be pooled for wave-~form analysis.
Mean heart rates at hourly intervals were then computed for the l4-day

period and were normalized by dividing the mean of hourly means by the grand

mean. These "normalized" means were utilized exclusively in the analyses

to be discussed.

Harmonic Analysis

Harmonic fits to the normalized hourly mean heart rates were computed and
are shéwn in Figs. 5 and 6. The 24-hour harmonic clearly did not provide a
good fit to the data (Fig. 5). A much better fit was obtained when harmonics
corresponding to 24, 12, 8, 6, and 4 hour periods were employed (Fig. 6).

Wave- Form Analysis

The hourly mean heart rates shown in Fig. 5 were asymmetrically distributed.
The minimum heart rate was reached at 2000 hr, and the maximum at 0700 hr. The
rapid rise and fall of heart rates preceded the lights being turned on and off
(0600 and 2000 hr). The data from 1400 to 2200 hr appeared to follow a logistic
or "growth" curve. The data from 2200 to 1400 hxr appeared to be a composite of
two curves, a unimodal and a logistic. It was, therefore, possible to analy=ze
this portion of the total curve in two ways: Hypothesis I: a logistic begin-
ning at 2200 hr to which a unimodal is added later; and Hypothesis II: a unimodal
beginning at 2200 hr and a logistic added latexr. Curves were fit under both
hypotheses, although only the fitting of the logistic and unimodal under Hypoth-

esis I will be presented in detail.
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THE WORKED EXAMPLE

Table IT contains the observed (normalized) data and the fitted values for
the first and second approximations. The observed data (column 2) had been nor-
malized by dividing each hourly mean by the grand mean. These values were coded
for working purposes by subtracting from each the minimal or basal value of 94.2
and then multiplying by 10 to obtain integer values (column 3). The sum of the
coded values was 1409, which is proportional to the area under the curve of
normalized means.

Fitting the Logistic

Three working postulates were utilized:

1. The starting time was taken at 2200 hr.

2. The maximum value was taken at 80 (coded data), which is the average
of the plateau (1000~1500 hr).

3. The logistic is symmetrical about its inflection point, which, in this
case,; is halfway between 0 at 2200 hr and 80 at 0600 hr, at which time
the maximum was first obtained,

The first approximation to the logistic was blocked out by hand, with values
as shown in column 4 of Table II. These values were the result of several esti~
mations, the final values chosen to produce a unimodal curve, when the estimated
values were subtracted from the coded values. The estimated values, y(t), were
utilized as shown in Table ITIT, The formation of the summation operators (e.g.,

-1 , .
Pn y(t)) can be easily seen. It may be noted that each value in any of the sum~
mation columns is the sum of the values behind it. Thus,

4

-1
PUy(t) =102 = § y(t)
=0
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In developing the set of simultaneous equations whose solution provides the
estimates of a, b, and y(0), the parameters of the logistic, only the final
values of the summation columns are used. It should be recalled that for the
logistic Ko = 0, hence only three simultaneous equations need be solved.

The simultaneous equations are, following equation (17) :

906a. + 34900b + 8y (0) 325

i

1203a + 29655b + 28y (0) 597

[1203 + 2(1040)1a + [29655 + 2(15600)]1b + 140y{0) = [597 + 2(662)]

In final form:

906a + 34900b + 8y(0) = 325
1203a + 29655b 4+ 28y(0) = 597
3283a + 60855b + 140y (0) = 1921

It may be seen that the first three successive coefficients of y(0) are n,
[n(n-1)]1/2, and [n(n-1) (2n-1)1/6. The fourth coefficient required in fitting
. . . 2
the unimodal is given by [n(n=1)/27] .
The solutions of these simultaneous equations, obtained in the usual fash-

ion, are:

4 = 0.6344, B = -0,0077, and $(0) = 2.1724

The recursion relationship that estimates the successive fitted values

(upper half of column 7 of Table II) is given by

el
[



¢ (t)
(1=8) = By (t)

§{t+1) (18)

which, in this case is

y(t)
0.3656 + 0.0077 J(t)

$(t+l) =

beginning with §(0) = 2.1724.

Fitting the Unimodal

The estimation of the total curve from 2200 to 1400 hr is shown in Table
II, column 6. The estimates of the logistic were subtracted from the total
curve to provide the first approximation of the unimodal. The development of
the summation operators is as shown in Table IV as are the coefficients of the
parameters to be estimated, a, b, KO, and y (0). Equation (17), applicable to
the unimodal curve, may be written in matrix notation AC = R where the elements
of the matrices are developed as shown in the latter part of Table IV. The C
matrix is the desired solution, a, b, Ko' and y(0) and is found by solving

C = A—lR. The details are as follows:

1199 35090 48758 10
3224 84941 91480 45
A =
13566 318127 287692 285
66812 1379807 1069198 2025

14



206 -0 . 0009 0.0012 =0,0003 0.0000+
1013 \ 0.0188 =0.,0030 0.0088 =0.0007
R = A - ==
5615 0.0002 =0,0002 0.0000+ =0 ,0000+
33479 -0,1431 0.2581 -0,0859 0.0076
a 0.6874
b : -0.0058
C = C=A R=
K =0.0090
o)
v (0) 2.5760

The recursion relationship to develop the successive values of y(t) is:

$(t+1) = 8 (19)

" A "l,n
(1-3) - Bf(t) ~- ﬁOPt ¥ ()

"'lA . -1, a . . _ln
where Pt V(t) are the successive values of Pn y(t), beginning with P "y (t) = 0.

The first value y(0) = 2.5760; the second would be given by:

_ §(0)
(1-8) - By (0)

AN

The fitted values for y(t) are shown in column 8 of Table II.

The descending logistic from 1400-2100 hr was fit identically under each
hypothesis in a manner similar to that described for the ascending logistic
given above. The backward relationship for a logistic is:

¥ (t+1)
[B/ (1=8) 19 (t+1) + [1/(1-3)]

P(t) = (20)
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Equations (18) and (20) permit "forward” and "backward" solutions of the
logistic equation. It is thus possible to utilize data covering only a portion
of the logistic curve to estimate the necessary parameters (a, b, and y(0)) and
to extend the fitted curve in either or both directions. In this case, equa-
tion (20) was utilized (backward solution), although equation (18) could have
been as easily used.

The logistic and unimodal under Hypothesis II were fit similarly. The
estimated parameters for all five curves are shown in Table V. The total
curves and their components fit under the two hypotheses are shown in Figs. 7

and 8.
DISCUSSION

The techniques of wave=form analysis are intended not to replace, but
rather to supplement harmonic analysis. Wave~form analysis begins only after
harmonic analysis has been completed and helps define functional relationships
in ways that would be quite difficult were only harmonic analysis used, Asym-
metric data, such as daily heart rate variation in the chicken, were indeed fit
with a harmonic series (Fig. 6), but the fit represented an empirical relation-
ship in that the parameters (harmonics) could not be readily utilized to explain
the observed data. On the other hand, the VIDE is a biologically-derived model
containing "growth" and "inhibitory" parameters that relate to real, but as yet
unidentified, physicochemical processes involved in establishing the obsexrved
cycles,

In discussion of the VIDE it is not possible at this time to utilize stand-

ard terminology in precise ways, as the necessary experimental work has vet to
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be done. Basic concepts, however, should not be ignored simply because they
cannot be defined precisely. It is conceptually correct to speak of the area
under the wave form as being proportional to enexrgy or work, even though the
amount of work cannot be quantified. It is clear that the heart muscle has
performed work., It is also evident that in the normal physiological situa-
tion, the greatexr the total number of beats per 24 hours, the greater the work
performed and the greater the area under the wave form. It may thus be quite
reasonable to attempt to define the parameters of the VIDE in terms of energy
expenditures.

The "growth" parameter, a, is proportional to the energy inputs relative
to the working of the heart, while b controls the rate at which energy is
expended. The first is proportional to the heart rate, while the second is
proportional to the square of the heart rate. In the logistic equation, b does
not become influential until some time after the curve has lifted off the basal
level. The mechanism(s) by which b operates is, of course, not known.

The unimodal curve contains, in addition to a and b, a third parameter,
Ko. It is this parameter, the "memory," that causes the VIDE to operate, in
Volterra's words, as a "closed cycle,” thus ensuring the cyclic nature of the
curve, The presence of this parameter infers that built into the system is a
monitor that keeps track of the total amount of energy expended to any instant
in time, At the same time the memory also controls the direction and path of
the curve, so that the cﬁrve rveturns to its starting point, making possible the

periodicity of the wave form.
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The mathematical technigue used to fit the VIDE family of equations was
the method of moments. The criterion of “best Ffits" is the conservation of
the area under the wave form, analogous'to conservation of energy. By defini-
tion, the method of moments conserves the area under the wave form, so that
areas under observed and fitted wave forms are identical, except for round-off
error. Thus, the VIDE curves fit under Hypotheses I and II (Figs. 7 and 8)
cannot be distinguished as to a better fit to the data, because the areas
under each of the curves are, to all intents and purposes, the same.

Whether the curves fit under Hypothesis I are a more correct representa-
tion of the true physioclogical situation than are those fit under Hypothesis
II cannot be ascertained mathematically. The estimated parameters (Table V)
indicate that Hypothesis I may be more acceptable, First, the ascending logis-
tic of Hypothesis I is more similar to the common, descending logistic, in that
the parameters are more nearly alike than under Hypothesis II, arguing from the
basis of physiological symmetry. Second, the "inhibitor," b, of the unimodal
fit under Hypothesis II is positive, indicating that it is another energy input
rather than an inhibitor, forcing the "memory," Ko, to serve as the inhibitor.

Mathematical reasoning must give way to physiological experimentation in
order to properly distinguish between these hypotheses. It is not known what
physiological parameﬁers or mechanisms are represented by the component curves,
nor is it known whether the logistic and the unimodal curves each represent a
discrete parameter ox are,vin fact, each the sum of many logistic and unimodal

curves, respectively.
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The fitted curves, Figs. 7 and 8, give evidence of the entrainment of HR
to the 14:10 light:dark regimen., Figure 7 (Hypothesis I) shows that the curve
crosses the mean (100%, right-hand axis) at 0300 and 1700 hxr, a 14:10 ratio.
Also, the maximum and minimum points occur at 0700 and 2200 hr, again a 14:10
ratio. For the curves fit under Hypothesis II, similar ratios are seen.

Winget et al. (1968b) observed entrainment of DBT and HR in the primate,

Cebus albafrons, to a 12:12 light:dark regimen, based also on fitted VIDE
curves.

Under Hypothesis I (Fig. 7) the liftoff of the first logistic from basal
level occurs after 2200 hr, while that of the unimodal occurs after 0200 hr.
The second logistic leaves its upper plateau after 1500 hr. Mathematically,
since the logistic curve must remain at its lower or upper asymptote and the
unimodal must remain at its basal level until perxturbed, the presence of posi-
tive and negative pulses or signals is thus demonstrated. 1In fact, the pulses
themselves are sufficient conditions for the establishment of the wave form,
stationary in time.

The differences in time between the observed pairs of pulses approximate
those times observed for significant periods in the periodogram (Fig. 3). The
interval from 2200 to 0200 hr is 4 hours; that from 1500 to 2200 hr is 7 hours
(approximately 6 hours); and that from any pulse to itself is 24 hours. The
harmonic model assumes that significant periods repeat regularly, so that, for
example, the 4-hour period occurs six times per 24~hour interval. However, the
contributions to the sum of harmonics made by each period are not equal over
the 24-hour intexrval, and, in fact, the contribution may be either negative or
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positive. Biologically, a regular 4~hour period may be unrealistic, yet it may
be utilized by harmonic analysis to better fit a portion of the wave form. In
the harmonic model only a single pulse per harmonic is reguired, one that could
have occurred at any time in the past. In the VIDE model a pulse is required
at least once within the basic period, in this case, every 24 hours. It is
therefore postulated that the intexrvals between pulses may be picked up by
harmonic analysis as significant periods, even though they do not recur within
the basic period.

The VIDE model may be more functionally related to the true physiological
mechanisms, and may thus provide the bioclogist with opportunities to understand
biorhythm data. The VIDE model by itself does not indicate which of the three
pulses noted is the primary pulse (and hence leads) and which pulses lag. The
primary pulse may be thought of as the phasengeber and perhaps can be distinguished
by experiments that are designed to compare relative degrees of entrainment to

the photoperiod.
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Table I DIFFERENCES OF ZERO

2 3 4
1 1 1
2 6 14
6 36

24

This table may be extended by the finite difference formulae:

it

xDXD'1 + xD

-1
x-1

e+ = o

23

30

150

240

120

62

540

1560

1800

720



Hour

2200
2300
2400
0%00
@200
0300
0400
0500
0600
0760
0800

0900

1600
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Sum

Table I CODED NORMALIZED HEART RATE MEANS OBSERVED AND ESTIMATED UNDER HYPOTHESIS |

Normalized
Data
94.6
94.6
95.7
96.9
97.1
97.6
100.4
105.0
106.1
107.3
105.3
104.9
102.9
101.7
102.7
101.7
102.7
101.8
1060.5
100.4
98.0
94.7
92.7
94.4

Coded
Datal

15
27
29
34
62
108
119
131
111
107
87
75
85
75
85
76
63
62
38

5(-15)

1409

Logistic

0

15
30
50
65
78
80
(89
(80)
80)
(80
(80)
(80)
(80)
80
78
74
60
38
19

2

First Approximation
(Frechand)

Unimodal

27
42
49
35
23
11

1Value in parenthesas is the observed coded value. A value of § was substituted.
alues in parentheses are on the upper plateau, assumed, but not used in fitting the logistic.

24

Total

15
30
52
74
105
122
129
115
103
91
86
82
80
80
78
74
60
38
19

1448

Second Approximation

(Mathematical Fit)
Logistic? Unimodal

0

6

14

29

50 3
66 8
76 21
80 39
(80) 48
(80) 39
(80) 24
(80) 13
(80) 6
(80)
(80) 1
80

78

73

61

40

18

7

2

Total

14
29
53
74
97
119
128
119
104
93
86
83
81
80
78
73
61
40
18

1447



O w3 N R W N = O

G0 S A LU B W N e D

G(t)

v 2l

N

i5
30
50
65
78
80

y(Oy{tr])

10
75
450
1500
3250
5070
6240
6400

P, 2y
0 0
2 0
7 2
22 9
52 31
102 83
167 185
245 352
325 597
plow %G
0
10
85 10
535 95
2035 630
5285 2665
10355 7950
16595 18305
34900

22995

Table IfI FIT OF THE FIRST LOGISTIC UNDER HYPOTHESIS I

By yarty B hyen

0 5 0
0 15 5
0 30 20
2 50 50
11 65 100
42 | 78 165
125 i 80 243
310 323
662
p. 36wt 0
0 2.1724
0 5.6824
0 13.8798
10 0 | 29.3752
105 10 49.6370
735 115 66.3773
3400 850 75.71126
11350 . 4250 779.8150
296355 15600

25

-2
P, Py(tr)

25
75
175
340
583
906

U
Pn y{t+1)

» O o ©

30
105
280
620

1203

4
B, Ay

“»w o o o @

35
140
420

1040



Table IV FIT OF THE UNIMODAL UNDER HYPOTHESIS |

O = O r B W B e

¢ vo o Ao 2o e ven p e 2w p e e Pty
¢ 0 0 0 9 0 10 0 0 0
2 4] 0 27 9 0 0 0
27 11 0 0 42 36 9 0 0 0
42 38 13 p 0 49 78 45 9 0 0
49 80 51 15 2 35 127 123 54 9 0
35 129 131 66 17 23 162 250 171 63 9
23 164 260 197 83 11 185 412 427 240 72
i1 187 424 . 457 280 6 196 597 839 . 667 312
198 611 881 737 2 202 . 793 - 1436 1506 979
204 809 492 ° 1618 0 204 995 2229 2942 2485
10 206 1013 2301 3110 1199 3224 5171 5427
Gty = y(Oy(+D). H® = y(t+1)Pn'1y(t)
cw  plewm p%m p %0 %o p%ew  mo o ptHO R7HO) R CHO R fHO P CHO
18 0 0 0 0 0 0 0 0 0
243 i8 0 0 54 0 0 0 0 0
1134 261 18 0 0 0 462 54 0 0 0
2058 1395 279 18 (] 0 1862 516 54 0 0 0
1715 3453 1674 297 18 0 2800 2378 570 54 0 0
805 5168 5127 1971 315 18 2967 5178 2948 624 54 0
253 5973 10295 7098 2286 333 1804 8145 8126 3572 678 54
66 6226 16268 17393 9384 2619 1122 9949 16271 11698 4250 732
12 6292 22494 33661 26777 12003 396 11071 26220 27969 15948 4982
6304 28786 56155 60438 38730 11467 37291 54189 43917 20930
35090 84941 116593 99218 48758 91480 98106 64847
R, = = 806 Ay = = 1199
Rz = = 1013 A12 = = 3224
RS = 1013 + 2(2301) = 5615 A13 = 3224 + 2(5171) = 13566
R, =1013 + 6(2301) + 6(3110) = 33479 Ay = 3224 + 6(5171) + 6(5427) = 66812
Aqg = = 35090 Az = ' = 48758
Agg = = 84941 Ay = = 91480
égz = 84941 + 2(11653) = 318127 A33 = 91480 + 2(98106) = 287692
'A“ii?) = 84941 + 6(11653) + 6(99218) = 1379807 A43 = 91480 + 6(98106) + 6(64847) = 1069198
hyg =m = 10
Aoy = n(n-l)/2 = 45
Ay = a(n=12n-1)/6 = 285
Ayy = (A24)% = 2025
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Table V ESTIMATED PARAMETERS OF THE FITTED CURVES

Type of
Hypothesis - Curve
I Logistic
Unimodal
1 Unimodal
Logistic
TandII Inverted Logistic

Hours

2300 - 0600 -

0300 - 13060

2200- 1300
0400 - 1000

1400 - 2100

27

>

0.6344
0.6874

0.3883
0.8196

0.6966

=24

-0.0077
~0.0058

0.0042
~0.0103

-0.0087

-0.0090

~0.0038

(o)

27124
2.5760

3.2970
0.8196

2.1156



Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

FIGURE CAPTIONS

' %
1 g in terms of ).
Parametric set of solutions of = S 1=+ A I pdx A
o

M dx
Heart rate data collected at 6-minute intervals over a l4-day time
period., Shaded area of wave form indicates hours of darkness in
the 24-hour period.
Periodogram of heart rate from data collected from an isolated male
chicken. K is the square of the amplitude (R) of the oscillation
normalized by the length (N) and variance (cz) of the time series
(X = NR2/402)-
Correlogram of heart rate from data collected every 0.1 hour from
an isolated male bird for 14 consecutive days. The correlation co-
efficient is for lag k (i.e., when k = 1, lag = 0.1 hour; therefore,
k = 240 represents a lag of 24 hours).
A harmonic fit (7 = 24 hours) to the normalized hourly mean heart
rates from an isolated male chicken,
Harmonic fits (7 = 24, 12, 8, 6, and 4 hours) to the normalized hourly
mean heart rate from an isolated male chicken.
The VIDE cuxve fit with Hypothesis I.

The VIDE curve fit with Hypothesis II.

28



d
/%a%zl—#+)\/;xpdx IN TERMS OF X

1.6 I | R D B | I B

NATIONAL AERONAUTI C5 AND SPACE ADMINISTRATION
AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA



260

220 |-
HEART RATE, N
BEATS/min _
- LIGHTS
80 |- 18X
|£1() __I [
0 8 16 24
TIME, hr

Figure 2.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



300 1 b 1T 7 ! 1 I | | i

200

100

C 4 8 12 6 20 24 28 32 36
PERIOD (T), hr

Figure 3.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA



AUTOCORRELATION
COEFFICIENT

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA



CODED NORMALIZED HEART RATE MEANS

140

120 -

100

80

60

40

20

TIME, hr

Figure 5.

NATIONAL AERONAUHCS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA

108.0

106.0

104.0

102.0

100.0

98.0

96.0

NORMALIZED HOURLY RATE MEANS, 100=272 beats per min



CODED NORMALIZED HEART RATE MEANS

140

120 -

100 -

80 -

60 -

40 -

20 -

-20

m3108.0

-1106.0

100.0

98.0

96.0

NORMALIZED HOURLY RATE MEANS, 100=272 beats per min

20

24

TIME, hr

Figure 6.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA
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